On the numerical approximation of eigenvalue problems arising from partial differential equations

DANIELE BOFFI

Professor, Applied Mathematics and Computational Science Computer, Electrical and Mathematical Science and Engineering Division

Abstract

We discuss the finite element approximation of eigenvalue problems arising from elliptic partial differential equations. We present various examples of non-standard schemes, including mixed finite elements, approximation of operators related to the least-squares finite element method, parameter dependent formulations such as those produced by the virtual element method. Each example is studied theoretically; advantages and disadvantages of each approach are pointed out.

Title: A deep neural network multigrid solver for flow problems

Prof. Dr. Thomas Richter University of Magdeburg Institute of Analysis and Numerics University Square 2 39106 Magdeburg
