Minimizers of a variational problem for nematic liquid crystals with variable degree of orientation in two dimensions

5th, November

Abstract: We study the asymptotic behavior, when $k \to \infty$, of the minimizers of the energy $G_k(u) = \int_{\Omega} \left((k-1) |\nabla|u||^2 + |\nabla u|^2 \right)$, over the class of maps $u \in H^1(\Omega, R^2)$ satisfying the boundary condition u = g on $\partial\Omega$, where Ω is a smooth, bounded and simply connected domain in R^2 and $g : \partial\Omega \to S^1$. The motivation comes from a simplified version of Ericksen model for nematic liquid crystals. We will present similarities and differences with respect to the analog problem for the Ginzburg-Landau energy.

Based on a joint work with Dmitry Golovaty.