
1896 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 18, NO. 9, SEPTEMBER 2016

Image Co-segmentation via Saliency Co-fusion
Koteswar Rao Jerripothula, Student Member, IEEE, Jianfei Cai, Senior Member, IEEE,

and Junsong Yuan, Senior Member, IEEE

Abstract—Most existing high-performance co-segmentation
algorithms are usually complex due to the way of co-labeling
a set of images as well as the common need of fine-tuning few
parameters for effective co-segmentation. In this paper, instead
of following the conventional way of co-labeling multiple images,
we propose to first exploit inter-image information through co-
saliency, and then perform single-image segmentation on each
individual image. To make the system robust and to avoid heavy
dependence on one single saliency extraction method, we propose
to apply multiple existing saliency extraction methods on each
image to obtain diverse salient maps. Our major contribution lies
in the proposed method that fuses the obtained diverse saliency
maps by exploiting the inter-image information, which we call
saliency co-fusion. Experiments on five benchmark datasets with
eight saliency extraction methods show that our saliency co-fusion-
based approach achieves competitive performance even without
parameter fine-tuning when compared with the state-of-the-art
methods.

Index Terms—Co-fusion, co-saliency, co-segmentation, fusion,
saliency, segmentation.

I. INTRODUCTION

IMAGE co-segmentation refers to the task of extracting com-
mon objects from a set of images, which is very useful for

many vision and multimedia applications such as object-based
image retrieval, image classification, and object recognition. It
can be considered as one type of weakly supervised segmenta-
tion methods, which makes use of the weak prior that there exist
common objects across different images in the set. This is quite
different from single image segmentation. The existing single
image object-level segmentation methods can only exploit ei-
ther the prior from human supervision, which requires human
interactions such as GrabCut, or the prior from single image-
based visual saliency, which might fail at complex images with
cluttered background or non-salient foreground. In contrast, im-
age co-segmentation goes beyond single image segmentation in
the sense that it can exploit not only the intra-image priors, but
also the inter-image priors. Furthermore, it also brings in the
new challenges of how to find the right inter-image priors and
how to make use of them.

The concept of co-segmentation was first introduced in [1],
which used histogram matching to simultaneously segment
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Fig. 1. Fusion of multiple saliency maps of an image generated by different
saliency extraction methods to enhance the common foreground object while
suppressing background saliency. The fusion process is essentially a weighted
summation of different saliency maps at superpixel level.

out the common object from a pair of images. Since then,
many co-segmentation algorithms have been proposed in the
literature, ranging from early image pair co-segmentation
[2], [3], multiple image co-segmentation [4]–[7], interac-
tive image co-segmentation [8]–[10] to the recent multi-
ple objects co-segmentation [11]–[14], multiple group co-
segmentation [15], noisy image set co-segmentation [16],
large-scale co-segmentation [17], [18], shape alignment tar-
geted co-segmentation [19] and evaluation criteria driven co-
segmentation [20].

Despite the great progress made by the existing co-
segmentation algorithms, they still have some major limitations.
First, most of the state-of-the-art co-segmentation algorithms re-
quire fine-tuning of quite a few parameters and the co-labeling
of multiple images simultaneously, which are very complex and
time-consuming, especially for large diverse datasets. Second,
as seen in the existing works [16], [21], co-segmenting images
might not perform better than single image segmentation for
some datasets. This might be due to the additional energy term
commonly used to enforce inter-image consistency, which often
results into unsmooth segmentations in individual images.

In this paper, we focus on binary image co-segmentation,
i.e. extracting a common foreground from a given image set.
Instead of following the conventional way of co-labeling multi-
ple images, we aim to exploit inter-image information through
co-saliency, and then perform single-image segmentation on
each individual image. Moreover, to make the system robust
and avoid heavy dependence on one single saliency extraction
method for generating co-saliency, we propose to apply multi-
ple saliency extraction methods on each image. Eventually, an
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Fig. 2. Flowchart of the proposed saliency co-fusion-based image co-segmentation where multiple images are used to generate weight maps for fusing different
saliency maps of images to extract a common foreground. Element, the basic processing unit of our process, is defined as a saliency map region of a superpixel.

TABLE I
NOTATIONS

Symbols Meanings References Domains

I Imageset Section III-A
N and M Number of images in I and number of saliency maps for each image Section III-A R
n, k and m Image, superpixel, saliency map indexes Section III-A R
I n nth image Section III-A I
H n Gaussian weight mask for nth image Eqtion (11)
Pn and Bn Superpixel set and saliency map set for nth image Section III-A
P n

k kth super-pixel of nth image Section III-A Pn

B n
m mth saliency map of nth image Section III-A Bn

J n Final fused saliency map of nth image Equation (2)
e Elements Section III-A
Ne Total number of elements Section III-A R
z Weight vector for elements Section III-A RN e ×1

D Prior term coefficient vector Equations (1) and (6) RN e ×1

G Smoothness term coefficient matrix Equations (1) and (14) RN e ×N e

λ Balancing parameter Equation (1) R
d Number of feature dimensions of an element Section III-B R
Xf and Xb Foreground and background feature matrices Section III-B RN e ×d

X Total feature matrix Section III-B RN e ×2 d

Sf , Sb and S Foreground, background and total similarity matrices Equations (3)–(5) RN e ×N e

Ds , Df and Dc Saliency, foreground/background and centerness cue vectors (8), (10) and (13) RN e ×1

T and F Average and recommended saliency vector Section III-C and Equation (7) RN e ×1

C Spatial weight vector Equation (12) RN e ×1

u and v Element vector indexes Section III-A R
Ru (v ) Saliency punishment recommended by element v to u Equation (9) R
V and Q Neighborhood matrix and diagonal matrix composed of its row sums Equations (14) and (15) RN e ×N e

γ Normalization parameter Equations (3)–(5), and (15) R
θ Similarity threshold Section III-B, Equations (7) and (10) RN e ×1

τ and φn Parameters for final segmentation Equation (16) R

enhanced saliency map is generated for each image by fusing
its various saliency maps via weighted summation at superpixel
level, where the weights are optimized by exploiting inter-image
information, as shown in Fig. 1. We call the proposed method
saliency co-fusion, whose objectives include: 1) boosting the
saliency of common foreground regions; and 2) suppressing the
saliency of background regions.

Fig. 2 illustrates the process flow of the proposed saliency co-
fusion based image co-segmentation. The key component lies in
the developed saliency co-fusion process, which is performed at

the superpixel level. Particularly, we define each saliency map
region (produced by one saliency detection method) of one su-
perpixel as an element (see Fig. 2 top), and give a weight for
each element. We formulate the weight selection as an energy
minimization problem, where we incorporate saliency recom-
mendations from similar elements, foreground/background pri-
ors through similar element voting, and neighbor smoothness
constraints. Finally, the fused saliency for a superpixel is just
a weighted summation of all the saliency maps of the super-
pixel. Experimental results show that our saliency co-fusion
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Fig. 3. Feature description. Each element gets divided into foreground and
background regions after global thresholding and two sets of features are ex-
tracted from these two regions separately, one for foreground and the other for
background.

based co-segmentation achieves competitive performance even
without fine-tuning the parameters, i.e., at default setting,
compared with the state-of-the-art co-segmentation algorithms.
In addition, our by-product, the fused saliency map, exhibits
some attractive properties, which could be useful for many other
applications.

II. RELATED WORK

Our method is closely related to co-segmentation and co-
saliency research.

Co-segmentation: Many co-segmentation algorithms have
been proposed in the literature. Early approaches [1]–[3] fo-
cused on segmenting a pair of images containing one com-
mon object. It was later extended to deal with multiple im-
ages containing one common object with more effective or
more efficient models enforcing inter-image consistency [4],
[5], [22]–[25]. However, there are also some algorithms be-
ing designed for segmenting multiple common foregrounds
from a given image set [11]–[14], where the best perform-
ers make use of supervised information. On the contrary, our
method is purely an unsupervised approach. A few interactive
co-segmentation approaches [8]–[10] have also been proposed,
where users can give scribbles for one or a small number of the
images. Thus, the extracted prior information is then used to
influence the segmentation of the entire image set. Our method
does not require such human intervention. Recently, [16] ap-
plied dense SIFT matching to discover common objects, and
co-segment them out from noisy image dataset, where some
images do not contain common objects. They tried to en-
force inter-image consistency strongly by developing match-
ing based prior, so as to exclude noise image from participat-
ing in the co-segmentation process. In [19], co-segmentation
was combined with co-sketch for effective co-segmentation
by sharing shape templates. In [26], co-segmentation prob-
lem was addressed by establishing consistent functional maps
across images in a reduced functional space, which requires
training. Another interesting work [20], which reports state-of-
the-art performance, employed region-level matching. Also, it
determined a good co-segment by checking whether it can be
well composed from other co-segments. Most of these methods

focused on pixel level co-labeling whereas we focus on saliency
co-fusion.

Just like we use multiple saliency maps, there are also some
methods that use multiple segmentation proposals to perform
semantic segmentation. For example, [27] made use of multi-
ple segmentation proposals of an image to come up with sev-
eral compositions and eventually produce semantic segmenta-
tion by searching for high-scoring maximal weighted cliques.
Later, [21] extended the idea of using multiple segmentation
proposals to the object co-segmentation problem and demon-
strated better results than classical co-segmentation algorithms.
In this research, in contrast to pre-segmenting and then selecting
segmentation proposals, we propose to fuse multiple saliency
maps to arrive at an enhanced saliency map and then carry out
segmentation.

Co-saliency: Co-saliency typically refers to the common
saliency existing in a set of images containing similar objects.
The term “co-saliency” was first coined in [28], in the sense of
what is unique in a set of similar images, and the concept was
later linked to extract common saliency, which is very useful for
many practical applications [29], [30]. For example, co-saliency
object priors have been efficiently used for co-segmentation
in [31]. Recently, a cluster based co-saliency method using var-
ious cues was proposed in [32], which learns the global corre-
spondence and obtains cluster saliency quite well. It represents
state-of-the-art method due to its simplicity, effectiveness, and
efficiency. However, the co-saliency method [32] is mainly de-
signed for images of the same object captured at different view-
points or instances. It cannot well handle image sets with huge
intra-class variation. Another recent work [33] fused saliency
maps from different images via warping technique and it is able
to handle the intra-class variation. However, most of these meth-
ods only use a single saliency map which may not be accurate
always.

III. SALIENCY CO-FUSION

In this section, we first formulate our saliency co-fusion prob-
lem. Then we give a detailed description of individual terms as
well as implementation details.

A. Problem Formulation

Considering a set of N images I = {I1 , I2 , ..., IN }, de-
note Bn = {Bn

1 , Bn
2 , ..., Bn

M } the set of M saliency maps
(normalized to range 0–1) for image In obtained using M
different existing saliency extraction methods. Also, denote
Pn = {Pn

1 , P n
2 , ..., P n

|Pn |} the set of superpixels in image In

obtained using [34]. Defining a saliency map region of super-
pixel as an element e, which is the basic processing unit in
our method, we have total Ne =

∑N
n=1 M |Pn | elements. Let

z(n, k,m) denote the associated weight for element e(n, k,m)
that belongs to image n, superpixel k, and saliency map m. The
weight maps depicted in Figs. 1 and 2 are basically constructed
using these associated weights.

We stack all the weights into a vector z = [z1 , z2 , . . . , zNe
]t

for simplicity and use u or v as the element indexes for refer-
encing purposes. We mix the usage of the element vector index
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Fig. 4. Illustration of how similar elements from other images help in determining better elements via Ds (saliency cue) and Df (foreground/background cue)
calculations in the first image. Note that the numerical value that an element is pointing to is the average saliency value of the element. Ds signifies how close
the saliency value of an element is to the recommended saliency value by its similar elements, whereas Df signifies the average punishment of an element for
deviating from the foreground/background recommendations from each of its similar elements. The lesser the Ds and Df are for an element, the higher weight the
element will get. For example, the element covering the chin area in the first saliency map is considered a better one than that in the second saliency map because
of having lower values for both of the cues.

TABLE II
EVALUATION ON MSRC DATASET USING JACCARD SIMILARITY METRIC WHERE INDIVIDUAL

SALIENCY MAPS AND FUSED SALIENCY MAPS ARE SEGMENTED USING OTSU’S METHOD

Class [39] [40] [41] [42] [43] [44] [45] [46] AVG MAX Ours

Car 0.541 0.466 0.381 0.469 0.510 0.598 0.507 0.629 0.660 0.666 0.696
Sheep 0.745 0.699 0.736 0.612 0.776 0.615 0.697 0.744 0.793 0779 0.810
Cow 0.670 0.670 0.673 0.603 0.734 0.658 0.653 0.736 0.742 0.729 0.794
Flower 0.705 0.679 0.556 0.627 0.694 0.625 0.641 0.688 0.721 0.726 0.768
Cat 0.439 0.526 0.560 0.597 0.573 0.565 0.539 0.609 0.651 0.624 0.714
Sign 0.746 0.619 0.552 0.567 0.646 0.669 0.570 0.796 0.775 0.743 0.812
Tree 0.636 0.655 0.471 0.400 0.632 0.601 0.561 0.606 0.681 0.669 0.738
House 0.586 0.613 0.486 0.389 0.528 0.630 0.450 0.640 0.670 0.669 0.712
Dog 0.527 0.559 0.503 0.520 0.469 0.452 0.503 0.627 0.628 0.582 0.643
Bird 0.529 0.590 0.573 0.535 0.590 0.459 0.583 0.611 0.644 0.589 0.662
Bike 0.377 0.416 0.297 0.3827 0.436 0.453 0.463 0.420 0.488 0.473 0.548
Chair 0.546 0.588 0.566 0.474 0.595 0.530 0.496 0.563 0.638 0.588 0.638
Face 0.515 0.411 0.395 0.582 0.463 0.446 0.367 0.548 0.565 0.567 0.571
Plane 0.420 0.437 0.399 0.297 0.505 0.505 0.475 0.542 0.535 0.469 0.518
Avg 0.570 0.566 0.510 0.504 0.582 0.558 0.536 0.626 0.656 0.634 0.688

with its corresponding matrix index (n, k,m) since one can
be converted to the other easily. Table I summarizes the major
notations used throughout the paper.

Our goal is to find the optimal weight for each of the elements
in order to jointly fuse various saliency maps of similar images
at superpixel level such that common foreground saliency gets
boosted up and background saliency is suppressed in final fused
saliency maps. In particular, we treat saliency co-fusion as a
weight selection problem. On one hand, we want to give higher
weights to elements with higher confidence. On the other hand,
we want to have certain consistency in the weight selection
among neighboring elements. Considering the constraint that
the resultant fused saliency map values should occur in the
range [0, 1], we formulate our task as a quadratic programming

problem

min
z

Dtz + λztGz

s.t. 0 ≤ zu ≤ 1, ∀u ∈ [1, Ne ],

M∑

m=1

z(n, k,m) = 1, ∀In ∈ I, P n
k ∈ Pn (1)

where there are two terms traded off by a balancing parameter λ.
The first term (Dtz) is a prior term to enforce global common-
ness and co-saliency, where the prior term coefficient vector
D ∈ RNe ×1 . The second term (ztGz) is a pairwise smooth-
ness term to encourage neighborhood elements to take sim-
ilar weights, where the smoothness term coefficient matrix
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Fig. 5. Examples to illustrate the advantages of the fused saliency maps over the input saliency maps.

G ∈ RNe ×Ne . The constraints in (1) are there to ensure that
individual weights range between 0 and 1, and the summation
of all the weights for one superpixel is equal to one. Once z is
determined by minimizing (1), the fused saliency map Jn for a
pixel p ∈ Pn

k can be simply computed as

Jn (p) =
M∑

m=1

z(n, k,m) × Bn
m (p) (2)

where Bn
m is the mth saliency map for image In .

B. Feature Description and Similarity

Unlike other methods [16], [32], [33] where features for
matching are extracted from images independent of saliency
maps, we develop a saliency map based feature descriptor be-
cause our processing units are elements (defined as a saliency
map region of a superpixel), instead of pixels or superpix-
els. We consider the fact that there is no uniformity among
saliency maps obtained by different methods. For instance,
some saliency maps are of high contrast, while others are of
poor contrast. Some are bright, while others are dark. This
can cause serious problems in the process if saliency val-
ues are directly taken as features. We tackle it by distin-
guishing potential foreground pixels from potential background
pixels in an element using the classical Otsu’s method as shown
in Fig. 3. For each group (both the potential foreground group
and the potential background group in the element), we construct
a feature descriptor which consists of the average dense SIFT de-
scriptor, and also the average color values in RGB, HSV, and Lab
spaces. However, for each element, we have two feature descrip-
tors with each having dimensions d = 128 + 3 + 3 + 3 = 137.
We concatenate them as the feature descriptor for one ele-

ment. In this way, different elements of the same superpixel
obtain different feature descriptors, depending upon the fore-
ground/background distributions in each element.

Xf ,Xb ∈ RNe ×d and X ∈ RNe ×2d denote the data matrices
that stack the foreground descriptors, the background descrip-
tors and the foreground background concatenated descriptors
of all the elements as its rows, respectively. We construct sim-
ilarity matrices Sf , Sb and S, all of Ne × Ne dimensions that
record the potential foreground similarity, the potential back-
ground similarity, and the total similarity, respectively, between
all the element pairs

Sf (u, v) = exp

(

−γ

d∑

q=1

(
Xf (u, q) − Xf (v, q)

)2

Xf (u, q) + Xf (v, q)

)

(3)

Sb(u, v) = exp

(

−γ

d∑

q=1

(
Xb(u, q) − Xb(v, q)

)2

Xb(u, q) + Xb(v, q)

)

(4)

S(u, v) = exp

(

−γ
2d∑

q=1

(
X(u, q) − X(v, q)

)2

X(u, q) + X(v, q)

)

(5)

where γ is a parameter set to 1
300 .

Note that the potential foreground similarity is set to zero if
all the pixels in the element belong to the background group
and vice versa. If elements u and v belong to the same image,
Sf (u, v), Sb(u, v), and S(u, v) are all set to zero since we aim
at exploiting similar elements from other images.

Based on the total similarity matrix S, similar elements for
each element are identified if the corresponding similarity values
are large than a similarity threshold θ (θ is set to 0.75). For one el-
ement, its similar elements provide recommendations via differ-
ent cues, based on which we then derive the appropriate weight
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Fig. 6. Sample examples of ground-truth images, fused saliency maps, our segmentation results and the difference maps (our results minus the corresponding
ground-truth images) on MSRC and iCoseg datasets. Note that for the difference maps, green, red, and blue correspond to 0, 1, −1, respectively.

for the considered element so as to encourage or discourage its
role in the final fused saliency map. Details are elaborated below.

C. Prior Term

We define our prior term coefficient vector D in (1) as

D = Ds + Df + Dc (6)

which includes three cues: saliency cue (Ds) from similar el-
ements, foreground/background prior cue (Df ) from similar
elements and centerness cue (Dc ) based on the spatial location
of the element.

Saliency Cue: Following the idea of co-saliency or common
saliency, we compare the average saliency of similar elements
with the average saliency value of the considered element to
decide whether the element should be emphasized or not (give
high weight or not). Let T = [T1 , T2 , ..., TNe

]t denote the vector
where each entry is the average saliency value of an element.

On the other hand for an element u, we compute the average
saliency recommended by its similar elements as

Fu =
∑Ne

v=1 Tvδ
(
S(u, v) > θ

)

∑Ne

v=1 δ
(
S(u, v) > θ

) (7)

where δ
(
·
)

is the indication function, equal to one if the
condition

(
·
)

is true (otherwise 0), which is used to deter-
mine whether element v is a similar one or not. Let F =
[F1 , F2 , ..., FNe

]t be the vector comprising of the recommended
average saliency values of elements. We then simply define the
saliency cue as

Ds = |F − T |. (8)

Essentially, (8) suggests that if T (u) is very different from F (u),
then the corresponding weight zu is encouraged to be small by
(1). Fig. 4 illustrates how similar elements from other images
help to determine better elements.
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TABLE III
OVERALL JACCARD SIMILARITY (JACC.) AND ACCURACY (ACC.) RESULTS ON

DIFFERENT DATASETS USING OUR METHODS THAT RESPECTIVELY

INCORPORATE OTSU’S METHOD AND GRABCUT METHOD WITH

THE DEFAULT SETTING [τ = 0.75] FOR SEGMENTATION

Otsu’s method GrabCut

Jacc. Acc. Jacc. Acc.

MSRC 0.69 86.7 0.70 87.9
iCoseg 0.65 87.0 0.70 89.7
Coseg-Rep 0.71 89.5 0.76 92.7
Car 0.70 85.3 0.69 86.0
Horse 0.49 78.5 0.55 83.9
Airplane 0.52 82.6 0.56 86.8
FlickrMFC 0.60 83.5 0.67 87.0

TABLE IV
PERFORMANCE RESULTS BY VARYING REGION-SIZE

PARAMETER OF SLIC [34] ON MSRC DATASET

20 40 60 80 100

Jacc. 0.6878 0.6877 0.6870 0.6869 0.6865
Acc. 86.31 86.30 86.27 86.26 86.25

TABLE V
COMPARISON ON COSEG-REP DATASET USING OVERALL VALUES

OF JACCARD SIMILARITY (JACC.) AND ACCURACY (ACC.)

Jacc. Acc.

Cosegmentaton Cosketch [19] 0.67 90.2
Geometric Mean Saliency [33] 0.73 92.2
Ours (tuned) 0.77 93.4

TABLE VI
COMPARISON WITH STATE-OF-THE-ART METHODS ON INTERNET

IMAGES DATASET USING OVERALL VALUES OF JACCARD

SIMILARITY (JACC.) AND ACCURACY (ACC.)

Car Horse Airplane

Jacc. Acc. Jacc. Acc. Jacc. Acc.

[4] (reported in [16]) 0.37 58.7 0.30 63.8 0.15 49.2
[50] (reported in [16]) 0.35 59.2 0.29 64.2 0.12 47.5
[16] 0.63 83.4 0.54 83.7 0.56 86.1
Ours (default) 0.69 86.0 0.55 83.9 0.56 86.8
Ours (tuned) 0.71 88.0 0.60 88.3 0.61 90.5

Foreground/Background Cue: Another cue similar elements
can provide is to recommend the given element to be foreground
or background. For an element u and one of its similar elements
v, if their foreground feature descriptors are more similar than
the background descriptors, v recommends foreground with a
saliency punishment of (1 − T (u)) to u; otherwise, it recom-
mends background with a punishment of (T (u) − 0), i.e.

Ru (v) = 1 − T (u), if Sf (u, v) > Sb(u, v)

Ru (v) = T (u) − 0, if Sf (u, v) < Sb(u, v) (9)

Fig. 7. Sample segmentation results on Coseg-Rep dataset.

where Ru (v) denotes the saliency punishment recommended
by v to u. Considering all the similar elements, we define
foreground/background cue Df for an element u as

Df (u) =
∑Ne

v=1 δ
(
S(u, v) > θ

)
Ru (v)

∑Ne

v=1 δ
(
S(u, v) > θ

) (10)

where δ
(
·
)

is the indication function, equal to one if the con-
dition

(
·
)

is true (otherwise 0), so as to include only similar
elements. Fig. 4 also illustrates how similar elements from other
images provide the foreground/background cue.

Centerness Cue: In addition to the above mentioned saliency
and foreground/background cues, we also take advantage of the
general observation that objects are often located at the center,
and such central bias is quite prevalent in several benchmark
datasets as pointed out in [35]. Therefore as an extra measure,
saliency maps that emphasize center regions are encouraged
to be given higher weights at central regions. To account for
central bias, a spatial weight mask for each image is created
using normalized Gaussian function which is centered at the
image center. Specifically, for a pixel p in In (of size widthn ×
heightn ) with coordinates (x, y) and with its origin at the image
center, the central weight mask is defined as

Hn (p) = exp
(

− x2

0.2 × width2
n

− y2

0.2 × height2n

)

. (11)
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Fig. 8. Sample segmentation results on Internet images dataset containing
three categories: (i) car, (ii) horses, and (iii) airplane.

For an element u or e(n, k,m), its central bias is calculated by
averaging the spatial weights of all its pixels, i.e.

Cu =

∑
p∈P n

k
Hn (p)

∑
p∈P n

k
1

. (12)

Let C = [C1 , C2 , ...., CNe
]t denote the vector consisting of the

central bias weights of all the elements. Thus, we now define
the centerness cue Dc for an element u as

Dc(u) = C(u) × |C(u) − T (u)| (13)

which essentially measures how the saliency of an element de-
viates from its central bias weight. Central bias weight is also
multiplied so that influence of this deviation in minimizing (1)
depends upon the spatial location of the element.

Note that our centerness cue is different from other methods
like [32], which deliberately emphasize the center regardless of
whether an object is present or not in the center. On the contrary,
our method emphasizes the center only if a salient object is
present in the center. Our centerness cue provides additional
support when the saliency and foreground/background cues fail
to recommend something substantial because of lack of support
from other images due to too much intra-class variation or pose
differences. In such case, if there is a salient object at the center,
it will be supported by the centerness cue.

TABLE VII
COMPARISON WITH STATE-OF-THE-ART METHODS ON MSRC AND

ICOSEG DATASETS USING OVERALL VALUES OF JACCARD

SIMILARITY (JACC.) AND ACCURACY (ACC.)

MSRC iCoseg

Jacc. Acc. Jacc. Acc.

Discriminative [4] 0.45 70.8 0.39 61.0
Multi-Class [50] 0.51 73.6 0.43 70.2
Object Discovery [16] 0.68 87.7 0.69 89.8
Geometric Mean Saliency [33] 0.70 88.4 0.72 91.6
Composition [20] 0.73 89.2 0.73 92.8
Ours (tuned) 0.71 88.7 0.72 91.9

TABLE VIII
COMPARISON ON FLICKRMFC DATASET USING OVERALL JACCARD

SIMILARITY (JACC.) VALUE. (U) MEANS UNSUPERVISED

METHOD AND (S) MEANS SUPERVISED METHOD

Methods Jacc.

Multiple Foreground Cosegementation (U) [14] 0.322
Multiple Foreground Cosegementation (S) [14] 0.482
Discriminative Clustering (U) [50] 0.414
Directed Graph Clustering (U) [11] 0.547
Graph Transduction (S) [13] 0.626
w/o NON RIGID Mapping (U) [12] 0.589
with NON RIGID Mapping (S) [12] 0.647
Ours (U) (default) 0.667
Ours (U) (tuned) 0.684

D. Smoothness Term

Since in our prior term we have made discrete conditions
using θ to select similar elements, there is a certain possibility
of inconsistencies in weight distribution. A smoothness term is
necessary to curb inconsistencies in weight distribution among
neighbor elements. Here we define neighbor elements as those
which are similar in not only the feature space but also the
saliency space. If a pair of elements have very similar saliency
and are very close in the feature space as well, they should
be encouraged to have similar weights. Thus, the smoothness
term ztGz is introduced to ensure that these neighbor elements
in both feature space and saliency space take similar weights.
However, we use the conventional normalized Laplacian matrix
for defining smoothness term coefficient G in (1), similar to [36],
i.e.

G = A − Q− 1
2 V Q

1
2 (14)

where A is the identity matrix, V is neighborhood matrix, and
Q is the diagonal matrix composed of row sums of matrix V . In
addition, different from the similarity matrix S defined in (5), V
takes into account similarity in both feature space and saliency
space, i.e.

V (u, v) = exp

⎛

⎜
⎝−γ

∑2d
q=1

(
X (u ,q )−X (v ,q )

)2

X (u ,q )+X (v ,q )

2d
− |T (u) − T (v)|

⎞

⎟
⎠

(15)
where γ is a normalization parameter set to 1

300 , which is the
same as that in (3)–(5).
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Fig. 9. Sample segmentation results on FlickrMFC dataset.

E. Implementation Details

For optimization, since G is positive semi-definite and the
constraints are linear, the objective function defined in (1)
is essentially a quadratic programming problem, which is
solved by the interior-point convex algorithm provided in
Matlab.

Once the fused saliency map is available, different single-
image segmentation algorithms can be applied for segmenta-
tion. In this research, we adopt two segmentation methods as
two variations. One is the classical Otsu’s method, which is an
optimal threshold based method. The other one is GrabCut al-
gorithm [37] with some modification. Specifically, by noticing
the final fused saliency map containing certain boundary infor-
mation, following [17], we modify the GrabCut energy equation
and add another localization potential to ensure that segmenta-
tion is guided not only by color, but also by the location pre-
scribed by the object prior contained in the fused saliency map.
The foreground (FG) and the background (BG) seed locations
are determined by

p ∈
{

FG, if Jn (p) > τ

BG, if Jn (p) < φn
(16)

where φn is a global threshold value automatically determined
by the classical Otsu’s method and τ is a parameter (by de-
fault τ = 0.75). It should be noted that other single-image seg-

mentation methods such as [38] can also be used for the final
segmentation.

IV. EXPERIMENTAL RESULTS

We conducted extensive experiments on five existing bench-
mark co-segmentation datasets (MSRC [47], iCoseg [8],
Coseg-Rep [19], Internet images dataset [16], and FlickrMFC
dataset [14]). As mentioned in the introduction, the existing
methods often require fine tuning of quite a few parameters. In
order to demonstrate the effectiveness of our method, we make
two types of settings in our experiments: 1) default parame-
ter settings for all the categories in the datasets and 2) tuning
parameter τ over categories for a fair comparison with other
methods. Following the literature, we adopted two evaluation
metrics: (i) Jaccard Similarity (Jacc.) [48] and (ii) Accuracy
(Acc.). Denote Af

p , Ab
p , Af

g and Ab
g as proposed foreground pix-

els set, proposed background pixels set, groundtruth foreground
pixels set and groundtruth background pixels set, respectively.
Here, Jaccard Similarity is defined as the size of intersection
divided by the size of union of the proposed and groundtruth

foreground pixels sets, i.e. |Af
p ∩Af

g |
|Af

p ∪Af
g |

. And Accuracy is defined

as the percentage of pixels that have same labels in both the
proposed and groundtruth masks, i.e.

|Af
p ∩ Af

g | + |Ab
p ∩ Ab

g |
|Af

g ∪ Ab
g |

× 100.
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TABLE IX
CLASS-WISE JACCARD SIMILARITY PERFORMANCE ON MSRC DATASET

Car Sheep Cow Flower Cat Sign Tree House Dog Bird Bike Chair Face Plane

[16] 0.667 0.789 0.794 0.714 0.662 0.823 0.699 0.727 0.675 0.673 0.541 0.622 0.583 0.567
[33] 0.704 0.799 0.801 0.723 0.760 0.839 0.772 0.764 0.683 0.628 0.462 0.650 0.604 0.543
[20] 0.710 0.850 0.880 0.790 0.700 0.850 0.760 0.840 0.690 0.680 0.580 0.730 0.630 0.580
ours 0.713 0.811 0.812 0.770 0.734 0.831 0.769 0.752 0.699 0.665 0.544 0.671 0.608 0.552

TABLE X
CLASS-WISE JACCARD SIMILARITY PERFORMANCE ON ICOSEG DATASET

Base Bear2 Brown Cheetah Christ Elephant Ferrari Goose Gymna Gymna Gymna Helico Hotba Kendo Kendo2
ball bear -stic1 -stic2 -stic3 -pter -lloon

[16] 0.657 0.653 0.736 0.697 0.770 0.688 0.724 0.742 0.948 0.839 0.896 0.803 0.657 0.778 0.826
[33] 0.756 0.701 0.662 0.754 0.795 0.735 0.703 0.773 0.910 0.897 0.911 0.766 0.763 0.862 0.893
[20] 0.610 0.720 0.920 0.670 0.870 0.670 0.680 0.870 0.970 0.820 0.900 0.820 0.880 0.890 0.960
ours 0.703 0.675 0.725 0.780 0.757 0.799 0.708 0503 0.976 0.831 0.892 0.803 0.802 0.896 0.921

Liver
pool

Monk Panda 1 Panda 2 Pyramid Skate Skate 2 Skate 3 Statue Stone-
henge

Taj
mahal

Track& field Wind
mill

Women
soccer

Women
soccer2

[16] 0.541 0.681 0.759 0.625 0.611 0.735 0.910 0.449 0.799 0.595 0.460 0.519 0.492 0.661 0.530
[33] 0.512 0.688 0.806 0.718 0.686 0.737 0.866 0.297 0.813 0.714 0.587 0.632 0.316 0.657 0.538
[20] 0.470 0.800 0.700 0.550 0.580 0.910 0.690 0.160 0.770 0.910 0.840 0.660 0.570 0.660 0.460
ours 0.470 0.683 0.722 0.614 0.595 0.769 0.900 0.491 0.863 0.781 0.516 0.595 0.531 0.699 0.526

We use eight saliency extraction methods [39]–[46] to gener-
ate various saliency maps as the input to our method. In the
following subsections, we first briefly introduce the datasets
used, followed by individual experiments, discussions and
comparisons.

A. Datasets

MSRC dataset contains 14 categories with 418 images in
total. Coseg-Rep dataset contains 23 categories and 572 images
in total, where there is a special category named “Repetitive”
that has several instances of the same type of object within
one image (e.g., an image containing multiple horses). Both of
the datasets exhibit intra-class variation. As a result, we do not
use the color feature for matching the elements as it will be
unreliable.

iCoseg dataset contains 38 categories with 643 images in
total. For a fair comparison with the existing methods [16],
[20], we use the same part of the dataset in our experiments.
This includes 30 categories and a total of 530 images. Flickr
MFC dataset contains multiple common objects that might not
appear in every image. It has 14 categories and 263 images
in total. For these two datasets, since the same objects appear
frequently across the images, we include the color features in our
method. Also, Internet images dataset created by [16] contains
three categories: Airplane, Car, and Horse, with 4347, 6381 and
4542 images respectively, where only some of the images have
ground-truth. Again, due to intra-class variation, we avoid using
color features for this dataset.

Note that we first perform k-means clustering using GIST de-
scriptor [29] and the proposed saliency co-fusion is then applied
to each cluster independently. This is to reduce the intra-class
variation. Otherwise, a wide diversity might cause unnecessary

difficulties in the co-fusion process. Empirically, we set the tar-
get cluster size to be 10, i.e., on average each cluster contains
10 images.

B. Performance Improvement by Co-fusion

The key point of our proposed saliency co-fusion process
is to generate a fused saliency map that can better highlight
the common object while suppressing the background saliency.
To compare the quality of the fused saliency map with other
saliency maps, we apply the simple segmentation approach,
Otsu’s method, on individual saliency maps of images in MSRC
dataset, and report segmentation results in Table II. It can be
seen that our method achieves about 10% gain over that of
the best saliency extraction method [46]. Table II also shows
the results of simple averaging or taking the maximum of those
individual saliency maps at the pixel level also outperform the
best single saliency map, clearly suggesting the advantage of
using multiple saliency maps. Our method outperforms the sim-
ple average function and the max function by about 6% and
8%, respectively. Note that the Avg Jaccard Similarity value
of 0.688 on MSRC dataset by using simple Otsu’s method
on the fused saliency map (without any parameter tuning) is
even better than the result of 0.68 (see Table VII) obtained
by [16] which used complex co-labeling, parameter tuning, and
Grabcut.

Fig. 5 shows the visual comparison of individual saliency
maps used and our fused saliency map. It can be seen that pixels
pertaining to the woman (the common object) obtain boosted
saliency values, while the background regions get suppressed
saliency values in the final fused saliency maps which lead to
clean segmentation results. Fig. 6 provides more examples of
fused saliency maps and the corresponding segmentation results
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TABLE XI
CLASS-WISE JACCARD SIMILARITY PERFORMANCE ON FLICKRMFC DATASET

Apple
picking

Baseball
kids

Butterfly
blossom

Cheetah
safari

Cow
pasture

Dog
park

Dolphin
aquarium

Fishing
alaska

Gorilla
zoo

Liberty
statue

Parrot
zoo

Stone
henge

Swan
zoo

Thinker
robin

[13] 0.540 0.640 0.620 0.850 0.580 0.550 0.580 0.320 0.570 0.900 0.450 0.960 0.360 0.840
[12] 0.661 0.655 0.641 0.683 0.586 0.570 0.618 0.449 0.609 0.563 0.590 0.476 0.504 0.642
Ours 0.720 0.783 0.729 0.800 0.694 0.700 0.717 0.663 0.631 0.614 0.640 0.594 0.604 0.682

TABLE XII
CLASS-WISE JACCARD SIMILARITY PERFORMANCE ON COSEG-REP DATASET

Repet Blue Camel Cormo Cranes Deer Desert Dragon Egret Fire Flea Forget
-itive -flagris -rant -bill -rose -fly -pink -bane -menot

[19] 0.754 0.890 0.641 0.493 0.842 0.450 0.880 0.380 0.463 0.902 0.888 0.867
[33] 0.747 0.823 0.688 0.592 0.854 0.634 0.826 0.550 0.499 0.781 0.829 0.842
Ours 0.776 0.903 0.702 0.613 0.863 0.636 0.841 0.542 0.601 0.884 0.851 0.849

Frog Geran-ium Ostrich Pear blossom Piegon Seagull Seastar Silen clorata Snow owl White campion Wild beast

[19] 0.484 0.897 0.605 0.777 0.427 0.464 0.631 0.835 0.355 0.739 0.839
[33] 0.714 0.852 0.668 0.775 0.624 0.681 0.762 0.766 0.736 0.794 0.776
Ours 0.741 0.912 0.747 0.791 0.675 0.719 0.821 0.828 0.748 0.901 0.877

on MSRC and iCoseg datasets. Furthermore, it also shows the
difference maps against the ground-truths.

C. Discussion on the Parameters

In Table III, we report our results obtained by fixing the
parameter τ in (16) to 0.75 on all the datasets with GrabCut
segmentation, and also the results obtained using simple Otsu’s
method. Due to the fact that categories of Internet images dataset
are quite large, their results on each category are separately
shown. We can see that even the simple Otsu’s method is able to
produce decent results with our fused saliency maps. This can
be attributed to the high-quality saliency maps produced by our
saliency co-fusion approach. By using GrabCut for segmenta-
tion, the performance of our method can be further improved.
For parameter λ in (1), we empirically set it to 9. Also, we
empirically set parameter γ in (3)–(5), and (15) to 1/300, and
parameter θ in (7) and (10) to 0.75. Parameter φn in (16) is
automatically computed using Ostu’s method.

In order to examine the sensitivity of our method on different
superpixel extraction methods and different parameter settings,
we further conducted experiments using irregular superpixes
generated by [49]. The results on MSRC dataset show that use
of the superpixels of [49] with the global thresholding achieves
the average Jaccard Similarity of 0.6876. However, this is almost
same as the result of 0.6875 obtained by using SLIC [34]. We
also vary the region-size parameter of SLIC [34]. By varying the
region-size parameter of SLIC [34] from 20 to 100, the results
can be seen in Table IV. It can be seen that the performance
decreases only slightly with the increase of the region size.
Therefore, these experiments indicate that the proposed method
is robust to different super-pixel methods/settings.

D. Experiments for Comparison

For different datasets, we compare our method with the meth-
ods that report the state-of-the-art performance on the datasets.

We denote “Ours (default)” as our method with the setting
τ = 0.75 using GrabCut while denoting “Ours (tuned)” as the
one where we tune parameter τ with a step size of 0.03 from
0.60 to 0.99 over each category and report the best results, which
is similar to other methods. Our method outperforms the state-
of-the-art methods on two of the single object co-segmentation
datasets (Coseg-Rep and Internet images) as shown in Tables V
and VI. Also, some sample visual results of our method on
Coseg-Rep dataset and Internet images dataset are shown in
Figs. 7 and 8, respectively.

Note that for the Internet images dataset, since each of its cat-
egories consists of large number of images, we tune parameter
τ per cluster. It can be seen from Tables V and VI that, in terms
of Jaccard Similarity metric, our method achieves about 5% on
Coseg-Rep dataset, 13%, 11%, and 9% improvements on Car,
Horse and Airplane categories of Internet images dataset, re-
spectively, when compared with the best results reported in [33]
and [16] for CosegRep and Internet Images datasets, respec-
tively. Table VII compares the results of our method with those
of state-of-the-art methods on MSRC and iCoseg datasets. It can
be seen that our results are competitive to the best one by [20],
while our method is much faster than [20]. Specifically, running
on the same PC with Intel Core i5-3470@3.20 GHz CPU and
32 GB RAM, [20] (using their own source codes in Matlab)
takes 29.2 h to complete the entire segmentation process on
MSRC dataset. However, our method (also in Matlab codes)
takes only 8.5 h. These durations include the time taken for pre-
processing steps as well like generating proposals in [20] and
generating saliency maps in our method.

It is interesting to see that our method can also well han-
dle Flickr MFC dataset that contains multiple common objects
across the images and the repetitive category of Coseg-Rep
dataset that contains repeated instances of objects, as shown in
Tables VIII and XII, respectively. Our method with tuning per
category outperformed the best one [12] (with supervised in-
formation) by 6% in terms of Jaccard Similarity metric despite
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Fig. 10. Sample segmentation results where our method outperforms [20].

being an unsupervised method. In fact, our method’s default
setting itself outperforms the state-of-the-art method on Flickr
MFC dataset. It should be noted that the comparison here is
in terms of foreground/background segregation, and not multi-
label segmentation. Fig. 9 shows some sample segmentation
results in such multiple-foreground scenario. It can be seen that
although different multiple objects are present in one category
of the dataset, our method successfully extracts the foreground.
As far as the repetitive scenario is concerned, our method ob-
tained a Jaccard Similarity value of 0.776 in comparison to
0.754 obtained by [19] on the repetitive category of the Coseg-
Rep dataset (see bottom three rows of Fig. 7 for such sample
visual results).

Tables IX–XII list out the detailed Jaccard Similarity results
of our method as well as the state-of-the-art methods on indi-
vidual categories of the four datasets. It was seen earlier that
our method performs worse than [20] on MSRC and iCoseg
datasets as far as the overall average performance is concerned.
The main reason could be that our method relies on saliency co-
fusion. If the common object cannot be identified as salient by
any of the saliency extraction methods, our method would not
be able to segment it out. Interestingly, these tables reveal that
despite such slightly inferior overall performance, our method
outperforms [20] in 4 out of 14 and 15 out of 30 categories in
MSRC and iCoseg datasets, respectively. Fig. 10 gives some vi-
sual examples of those categories, where our results look better
than those of [20].

Fig. 11. Failure cases: our method fails (i) (red box) when a common object
(black dog) is not salient in any of the saliency maps; (ii) (green box) when
multiple foregrounds are present and the goal is to extract a particular fore-
ground; and (iii) (yellow box) when very similar images are grouped for the
co-segmentation process. (iv) (blue box): examples to show the limitations of
our method in some specific categories in MSRC where our methods tend to
segment convex shapes instead of thin rods in the bike class, miss segmenting
the unsalient shoulder in the face class, and include the airport in the airplane
class. Note that segmentations with a blue background are our results and those
with a green background are the ground-truth results.

E. Limitations and Discussions

Although our method performs well on the benchmark
datasets in general, there are some failure cases: (i) As shown
in the red-box of Fig. 11, our method only segments out one
dog and misses the other. This is because one of the dogs is
extremely salient in all the saliency maps, while the other dog
is not very salient in any of the saliency maps. (ii) Another
case is when there are multiple common salient objects in the
images, while the goal of benchmark dataset is to segment out
only one common object. For such case, our method will seg-
ment out all the salient common objects as shown in the green-
box of Fig. 11. (iii) Similar to almost all the co-segmentation
methods, our method requires sufficient background variations
across the images in one cluster. If very similar images are being
included in one cluster, our method will fail to distinguish back-
ground from the foreground, as illustrated in the yellow-box
of Fig. 11.

The blue box in Fig. 11 gives some class-specific exam-
ples where our method does not perform well. For example,
(a) Bicycles in the bike category need segmentation of thin rods
and tires whereas our method segments such bicycles into con-
vex shapes such as triangles and disks due to using GrabCut;
(b) Our method misses segmenting out shoulders in most of the
images in the face category, because shoulders are not so salient;
and (c) Many images in the plane category also include airports
along with the planes, thus making it difficult to segment out
the planes clearly.
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V. CONCLUSION

We have proposed a novel saliency co-fusion approach for
the purpose of image co-segmentation which uses the asso-
ciation of similar images to fuse multiple saliency maps of
an image in order to boost up common foreground saliency
and suppress background saliency. Experimental results on
five benchmark datasets show that our method while co-fusing
eight different saliency maps, achieves very competitive per-
formance, compared to the state-of-the-art methods of image
co-segmentation.
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